
International Journal of Solids and Structures 40 (2003) 6369–6388

www.elsevier.com/locate/ijsolstr
Stress concentrations in the particulate composite
with transversely isotropic phases

V.I. Kushch *

Institute for Superhard Materials of the National Academy of Sciences, 2 Avtozavodskaya Str., Kiev 04074, Ukraine

Received 3 March 2003; received in revised form 2 July 2003
Abstract

The accurate series solution have been obtained of the elasticity theory problem for a transversely isotropic solid

containing a finite or infinite periodic array of anisotropic spherical inclusions. The method of solution has been de-

veloped based on the multipole expansion technique. The basic idea of method consists in expansion the displacement

vector into a series over the set of vectorial functions satisfying the governing equations of elastic equilibrium. The re-

expansion formulae derived for these functions provide exact satisfaction of the interfacial boundary conditions. As a

result, the primary spatial boundary-value problem is reduced to an infinite set of linear algebraic equations. The

method has been applied systematically to solve for three models of composite, namely a single inclusion, a finite array

of inclusions and an infinite periodic array of inclusions, respectively, embedded in a transversely isotropic solid. The

numerical results are presented demonstrating that elastic properties mismatch, anisotropy degree, orientation of the

anisotropy axes and interactions between the inclusions can produce significant local stress concentration and, thus,

affect greatly the overall elastic behavior of composite.
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1. Introduction

Evaluation of the stress caused by the mismatch in elastic properties of matrix and inhomogeneities

is one of the key problems in composite mechanics. Indeed, given the stress and strain fields in the bulk

of composite material one can integrate them to determine the macroscopic response, or ‘‘effective’’

elastic properties. On the other hand, information on stress concentration, i.e. location and magnitude

of peak microstress, provides the necessary basis on which the composite�s strength theories can be built

up.

For the particulate composites with isotropic constituents, there is a variety of models and methods to

evaluate both the stress state and macroscopic elastic moduli. When the volume fraction of disperse phase is
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low, even simple one-particle models based on the well-known Lame and Eshelby�s solutions give a

reasonable approximation of stress fields in and around the inclusions. With the volume content increasing,

interaction between the disperse phase particles exerts more and more pronounced effect on the composite�s
behavior. To account for this effect properly, the models of two or more interacting inclusions in a solid
should be considered. Various accurate and approximate methods to analyze the many-particle models

were proposed by Moskovidis and Mura (1975), Chen and Acrivos (1978), Rodin and Hwang (1991), Hori

and Nemat-Nasser (1993) and Kushch (1996), among others. The higher dispersion volume content is, the

more sophisticated models and methods are to be applied to predict the composite�s behavior. One widely

used approach consists in considering the periodic model structure with a periodicity cell containing from

one to several particles. This model is advantageous in that it provides a natural way, through the periodic

boundary conditions on the opposite cell facets, to account for interactions among a whole infinite array of

inhomogeneities. The periodic composite with rigid spherical particles was studied by Nunan and Keller
(1984) by the method of singular integral equations, with the elastic ones by Kushch (1985) and Sangani

and Lu (1987) who used the multipole expansion method. For the composites with more general ellipsoidal

shape of particles an approximate solution for the effective moduli has been obtained by Iwakuma and

Nemat-Nasser (1983). Kushch (1997b) has considered more realistic structural model of composite and

developed an accurate analytical, multipole expansion-based method of solution. In the last work, the

microstress concentrations were investigated as well.

By contrast with the isotropic case, a very few papers can be found in literature devoted to the stress

analysis in a particle reinforced composite with anisotropic phases; in these works, the simple ‘‘dilute
composite’’ models only were considered. The probable reason is that an analysis of this problem requires

more complicated math to be developed and applied. The most work done up to date in this area are based

on using the Green�s functions (point body force solution) for an infinite solid. So, Mura (1982) has derived

the Eshelby�s type solution for a single inclusion in an anisotropic medium. This work does not provide,

however, the explicit analytic expressions for the internal stress distribution similar to those obtained by

Eshelby in the isotropic case. In the particular but practically important case of transversely isotropic

elastic properties, Pan and Chou (1976) have been found analytical expressions for the Green�s functions

and their derivatives. Based on their findings, Withers (1989) has applied the Eshelby�s method to calculate
the elastic field about an ellipsoidal inclusion embedded within a transversely isotropic matrix of the same

elastic constants. In the Willis� (1975) work, two interacting spherical voids in an anisotropic elastic solid

were considered and the problem was formulated in terms of integral equation for the ‘‘transformation

stress’’ in equivalent homogeneous inclusion. Using the iterative perturbation technique, an explicit

approximate solution has been obtained for polynomials up to second degree.

An alternate approach has been proposed by Podil�chuk (1984) (see also the recent Podil�chuk�s (2001)

survey paper) who considered a solid with a single inclusion subjected to the polynomial external load. His

method is based on the observation that the governing equations describing steady stress in the transversely
isotropic solid allow separation of variables in the properly introduced curvilinear coordinates. The

resulting rigorous series solution is expressed in terms of the associated Legendre functions. It should be

noted, however, that the original solution is given by Podil�chuk (1984) in a scalar form which makes it

rather difficult to analyze and utilize.

In the present paper, the Podil�chuk�s method is revised and expanded on the class of many-particle

models of composite with transversely isotropic phases. To expose the basic technique of method, we start

with the one-particle problem and obtain the exact analytical solution, written in a compact matrix-vector

form, in the case of arbitrarily oriented anisotropy axes of the matrix and inclusion materials. Noteworthy,
in all mentioned above works the anisotropy axes were assumed to be aligned. Then, in the subsequent

sections, we apply systematically the method developed to obtain the accurate solutions for a solid con-

taining a finite array and infinite periodic, lattice type array of inclusions. The numerical results are pre-

sented and discussed in the last section. They demonstrate an effect on stress concentration of the selected



V.I. Kushch / International Journal of Solids and Structures 40 (2003) 6369–6388 6371
structural parameters of composite as well as accuracy and computational efficiency of the method

developed.
2. Medium with a single inclusion

In the Cartesian coordinate system Oxyz with Oz axis aligned with the anisotropy axis of transversely

isotropic material, the generalized Hook�s law r ¼ C � e has a form
rx ¼ C11ex þ C12ey þ C13ez; sxz ¼ 2C44exz;

ry ¼ C12ex þ C11ey þ C13ez; syz ¼ 2C44eyz;

rz ¼ C13ex þ C13ey þ C33ez; sxy ¼ ðC11 � C12Þexy :
ð1Þ
Here, two-indices notation Cij ¼ Ciijj is adopted. The components of stress tensor r satisfy the equi-

librium equations r � r ¼ 0 and the small elastic strain tensor e is related to the displacement vector u by

e ¼ 1
2
½ruþ ðruÞT	.

Let us consider an infinite solid with a single spherical inclusion of radius R embedded. Both the matrix
and inclusion are elastic and transversely isotropic; at the interface S, the conditions of perfect mechanical

contact
ðuþ � u�ÞjS ¼ 0; ðTnðuþÞ � Tnðu�ÞÞjS ¼ 0; ð2Þ

are imposed, where Tn ¼ r � n the normal traction vector and n is the outer normal unit vector at the surface

S. Here and below, all the parameters associated with the matrix and inclusion are denoted by the su-

perscript ‘‘�’’ and ‘‘þ’’, respectively. The stress state of a medium is induced by the remote constant stress

tensor S or strain tensor E ¼ C�1 � S prescribed.

We assume the anisotropy axes of both the matrix and inclusion materials to be arbitrarily oriented and

introduce the material-related Cartesian coordinate systems Ox�y�z� and Oxþyþzþ with common origin in
the centre of inclusion. The point coordinates and the vector components in these coordinate systems are

related by
xþi ¼ Xijx�j ; uþi ¼ Xiju�j ; ð3Þ
where X is the rotation matrix: XT ¼ X�1 and detX ¼ 1. Transformation of the complex Cartesian vectors

ei defined in Appendix A, uses the formula
eþi ¼ X�
ije

�
j ; where X� ¼ D�1XD and D ¼

1 1 0

�i i 0
0 0 1

0@ 1A: ð4Þ
The disturbance field produced by the inclusion is vanishing at infinity and, for the external load pre-

scribed, u� ! E � r as j r j! 1. We decompose the displacement vector in the matrix domain into a sum of

regular part, or far field, for a homogeneous space U0 ¼ E � r and singular disturbance, or near field U1,
produced by the inhomogeneity. The regular part U0 satisfies the equilibrium equations identically; the

disturbance field U1 vanishes at infinity and, therefore, its series expansion contains the singular solutions

FðjÞ
ts of the governing equations (see Appendix A) only. Thus, we have
u� ¼ U0 þU1 ¼ E � r� þ
X3

j¼1

X1
t¼0

X
jsj6 tþ1

AðjÞ
ts F

ðjÞ
ts ðr�Þ: ð5Þ
On the contrary, the displacement field within the inclusion uþ has no singularity and thus can be ex-
panded into a series over the regular solutions fðjÞts (A.11):
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uþ ¼
X3

j¼1

X1
t¼0

X
jsj6 tþ1

DðjÞ
ts f

ðjÞ
ts ðrþÞ; ð6Þ
where DðjÞ
ts as well as AðjÞ

ts in (5) are the expansion coefficients to be determined from the contact condi-

tions (2).

Expression (6) is written already in the spheroidal coordinates and the similar expansion of the regular

part U0 follows from the formulae (A.12). After some algebra, we get
E � r� ¼
X3

j¼1

X1
t¼0

X
jsj6 tþ1

eðjÞts f
ðjÞ
ts ðr�Þ; ð7Þ
where
eð1Þ10 ¼ d�
1 m�1

k�1 m�2 � k�2 m�1
½E33m

�
2 þ k�2 ðE11 þ E22Þ	;

eð1Þ11 ¼ �eð1Þ1;�1 ¼
d�
1

ffiffiffiffiffi
m�1

p

k�1
ðE13 � iE23Þ;

eð1Þ12 ¼ eð1Þ1;�2 ¼ ðE11 � E22 � 2iE12Þ;

eð2Þ10 ¼ � m�2 d
�
2

k�1 m�2 � k�2 m�1
½E33m

�
1 þ k�1 ðE11 þ E22Þ	;

eð3Þ11 ¼ eð3Þ1;�1 ¼
ffiffiffiffiffi
m�3

p
d�
3

k�1
ð1� k�1 ÞðE13 � iE23Þ;

ð8Þ
all other coefficients eðiÞts are equal to zero. For definiteness sake, we assume here and below m1 6¼ m2; in the

case of equal roots m1 and m2 of Eq. (A.3), one has to use fð2Þts and Fð2Þ
ts in the form (A.16) rather than (A.11) in

(5)–(7) and all the subsequent formulae.

To solve for the expansion coefficients, we note first that the functions F
ðiÞ
0s are, in fact, the fundamental

solutions representing action of the point body forces in an infinite solid. Because no body forces is sug-

gested in the problem statement, we get immediately AðiÞ
0s � 0. The remaining coefficients AðiÞ

ts and DðiÞ
ts will be

determined from the interface boundary conditions (2). To obtain a resolving set of equations for the

unknowns AðiÞ
ts and DðiÞ

ts we make use the representation (A.13) of the functions fðiÞts and FðiÞ
ts on the surface

r ¼ R, rewritten in the compact form as
FðiÞ
ts jS¼

X3

j¼1

UGji
tsv

sj
t ej; fðiÞts jS¼

X3

j¼1

UMji
tsv

sj
t ej; ð9Þ
where
UGts ¼ fUGij
tsg ¼

Qs�1
t ðn10Þ Qs�1

t ðn20Þ Qs�1
t ðn30Þ

�Qsþ1
t ðn10Þ �Qsþ1

t ðn20Þ Qsþ1
t ðn30Þ

k1ffiffiffiffi
m1

p Qs
t ðn10Þ

k2ffiffiffiffi
m2

p Qs
t ðn20Þ 0

0BBB@
1CCCA;

UMts ¼ fUMij
tsg ¼

P s�1
t ðn10Þ Ps�1

t ðn20Þ P s�1
t ðn30Þ

�P sþ1
t ðn10Þ �Psþ1

t ðn20Þ P sþ1
t ðn30Þ

k1ffiffiffiffi
m1

p P s
t ðn10Þ

k2ffiffiffiffi
m2

p P s
t ðn20Þ 0

0BBB@
1CCCA

ð10Þ
and s1 ¼ s� 1, s2 ¼ sþ 1 and s3 ¼ s. In these notations,



V.I. Kushch / International Journal of Solids and Structures 40 (2003) 6369–6388 6373
u� ¼
X3

j¼1

X1
t¼0

X
jlj6 tþ1

X3

a¼1

UGja�
tl AðaÞ

tl

"
þ UMja�

tl eðaÞtl

#
vlj
t ðh�;u�Þe�j ð11Þ
and
uþ ¼
X3

i¼1

X1
t¼0

X
jsj6 tþ1

X3

a¼1

UMiaþ
ts DðaÞ

ts

" #
vsi
t ðh

þ;uþÞeþi : ð12Þ
Note that u� (11) and uþ (12) are still written in the different coordinate systems. Therefore, before

substituting them into (2), uþ has to be expressed in terms of the variables h�, u� and vectors e�j . For this
purpose, we apply the Bateman�s transformation formula of the surface spherical harmonics due to rotation

of coordinate basis (Bateman and Erdelyi, 1953):
vs
t ðh

þ;uþÞ ¼
X
jlj6 t

ðt þ lÞ!
ðt þ sÞ! S

t�s;t�l
2t ðwÞvl

tðh
�;u�Þ; ð13Þ
where Ssl
2t are the spherical harmonics in four-dimensional space and w is the vector of Euler�s parameters

related to the rotation matrix X by
X ¼
w2

2 � w2
1 � w2

3 þ w2
4 2ðw2w3 � w1w4Þ 2ðw1w2 þ w3w4Þ

2ðw2w3 þ w1w4Þ w2
3 � w2

1 � w2
2 þ w2

4 2ðw1w3 � w2w4Þ
2ðw1w2 � w3w4Þ 2ðw1w3 � w2w4Þ w2

1 � w2
2 � w2

3 þ w2
4

0@ 1A: ð14Þ
Applying (13) and (4) to (12) gives
uþ ¼
X3

j¼1

X1
t¼0

X
jlj6 tþ1

X3

i¼1

X�
ij

X
jsj6 tþ1

ðt þ ljÞ!
ðt þ siÞ!

St�si;t�lj
2t ðwÞ

"
�
X3

a¼1

UMiaþ
ts DðaÞ

ts

#
vlj
t ðh�;u�Þe�i : ð15Þ
Now, we substitute u� (11) and transformed expression of uþ (15) into the first of conditions (2) and

make use of the orthogonality property of spherical harmonics vs
t on the surface S to decompose vectorial

functional equality uþ ¼ u� into a set of linear algebraic equations. It can be written in the compact matrix-

vector form as
UG�
tl � Atl þUM�

tl � etl ¼
X

jsj6 tþ1

UM�
tsl �Dts; t ¼ 0; 1; 2; . . . ; j l j 6 t þ 1; ð16Þ
where
UM�
tsl ¼WtslUM

þ
ts ; W ji

tsl ¼ X�
ij

ðt þ ljÞ!
ðt þ siÞ!

St�si;t�lj
2t ðwÞ;

Atl ¼ ðAð1Þ
tl ;A

ð2Þ
tl ;A

ð3Þ
tl Þ

T
; Dtl ¼ ðDð1Þ

tl ;D
ð2Þ
tl ;D

ð3Þ
tl Þ

T
and

etl ¼ ðeð1Þtl ; e
ð2Þ
tl ; e

ð3Þ
tl Þ

T
:

ð17Þ
Obtaining the second set of equations follows the same procedure where, instead of (A.13), the repre-

sentation (A.14) of the normal traction vectors TnðfðjÞts Þ and TnðfðjÞts Þ on the surface r ¼ R has to be utilized.
After transformations, we obtain
TG�
tl � Atl þ TM�

tl � etl ¼
X

jsj6 tþ1

TM�
tsl �Dts; ð18Þ
where TM�
tsl ¼WtslTM

þ
ts . Form of the matrices TGtl and TMtl is clear from (A.14). Eqs. (16) and (18)

together form a complete set of linear equations from where AðiÞ
ts and DðiÞ

ts can be determined. To reduce
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dimension of the linear system to be solved, one can eliminate Atl to get the set of equations involving the

unknowns Dts only:
X
jsj6 tþ1

½ðTG�
tl Þ

�1
TM�

tsl � ðUG�
tl Þ

�1
UM�

tsl	 �Dts ¼ ½ðTG�
tl Þ

�1
TM�

tl � ðUG�
tl Þ

�1
UM�

tl 	 � ets;

t ¼ 0; 1; 2; . . . ; j l j 6 t þ 1: ð19Þ
After we have solved (19) for Dts, either (16) of (18) can be applied to determine Atl and, thus, accomplish

solution of the problem.

An attempt to solve the linear system (19) discovers, however, that its determinant is equal to zero. The

reason is that, at a given t, some of the functions fðiÞts at j s j P t are linearly dependent: e.g., f
ð1Þ
t;tþ1 � f

ð2Þ
t;tþ1 and

f
ð2Þ
t;tþ1 � f

ð3Þ
t;tþ1. Really, we have 3ð2t þ 3Þ vectorial solutions of order t introduced whereas the number of

independent functions is equal to 3ð2t þ 1Þ (remind, the Cartesian components of fðiÞts are the polynomials of

order t (A.11) and f s
t � 0 for j s j> t). Due to the same reason, not all the eðjÞ1s are represented in (8). Adding

six additional constraints Dð2Þ
t;�t ¼ 0;Dð2Þ

t;�ðtþ1Þ ¼ 0 and Dð3Þ
t;�ðtþ1Þ ¼ 0 to (19) gives, finally, a well-posed set of

linear equations possessing an unique solution.

It is also straightforward to show (Podil�chuk, 1984) that, although the functions F
ðjÞ
t;�ðtþ1Þ (six in total for

a given t) are discontinuous at z ¼ 0, the resulting displacement u� (5) is continuous and differentiable

provided we have the expansion coefficients AðiÞ
ts determined from (16) or (18). In fact, we have there exactly

6 equations (with jlj ¼ t þ 1) to determine AðiÞ
t;�ðtþ1Þ in a way that the breaks in each separate function F

ðjÞ
t;�ðtþ1Þ

cancel each other. Alternatively, one can utilize these 6 equations to introduce, from the very beginning, a

set of 3ð2t þ 1Þ singular continuous solutions of order t, being, naturally, the linear combinations of FðjÞ
ts .

This approach, however, is disadvantageous in that the introduced in such a way singular partial solutions
have rather complicated structure which results, in turn, in much more involved theory as compared with

that presented above.

And, to complete this section, we note the following. First, because ets � 0 for t 6¼ 1 in (8), only AðiÞ
1s and

DðiÞ
1s are non-zero in the solution obtained. Moreover, in the case of aligned anisotropy axes X ¼ I and

W ji
tsl ¼ dijdsl and the system (19) breaks down onto 5 separate sets of each value of index s to give a compact

form of the Podil�chuk�s (1984) solution. The solution we have found for the simple loading type is of finite

form and exact. However, all the theory developed is valid and the solution remains exact for the arbitrary

polynomial external load. In this case, the series expansions (6) and (8) contains the higher ðt > 1Þ har-

monics as well. In the subsequent sections, this feature will be used to derive accurate, asymptotically exact

solutions of the many-particle problems.
3. Finite array of inclusions

Let us consider now an unbounded domain containing N non-touching spherical particles of radius Rq

with the centres located in the points Oq, q ¼ 1; 2; . . . ;N and the elastic stiffness tensors Cþ
q . We introduce

the local material-related coordinate systems Oxþq y
þ
q z

þ
q which origin and orientation with respect to the

global Cartesian coordinate system Ox�y�z� is defined by the vector Rq and the rotation matrix Xq (Fig. 1).

The matrix–inclusion interface boundary conditions are
ðuþq � u�Þ jSq¼ 0; ðTnðuþq Þ � Tnðu�ÞÞ jSq¼ 0; q ¼ 1; 2; . . . ;N ; ð20Þ
the stress state of the inhomogeneous medium is governed, as before, by the constant load applied at

infinity.



Fig. 1. Geometry of the many-particle model.
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In (20), uþq is the displacement vector in the volume of qth inclusion which, by analogy with (6) can be

written as
uþq ¼
X3

j¼1

X1
t¼0

X
jsj6 tþ1

DðqÞðjÞ
ts fðjÞts ðrþq Þ: ð21Þ
To construct the solution in the multiply-connected matrix domain, we shall follow the procedure

described by Kushch (1996). According to the generalized superposition principle, the displacement vector

u� can be written as a sum of linear far field and the disturbance fields induced by each separate inclusion:
u� ¼ E � r� þ
XN
p¼1

Upðr�p Þ; r�p ¼ r� � Rp: ð22Þ
By analogy with (5), each singular term Up allows the series expansion in the form
Upðr�p Þ ¼
X3

j¼1

X1
t¼0

X
jsj6 tþ1

AðpÞðjÞ
ts FðjÞ

ts ðr�p Þ; ð23Þ
where AðpÞðjÞ
ts as well as DðqÞðjÞ

ts in (21) are the series expansion coefficients to be found from the boundary
conditions (20). It is evident that for u� taken in the form (21) and (22), the condition u� ! E � r at infinity
is satisfied.

Note that the separate terms of the sum in (21) are written in the different coordinate systems. To enable

application the procedure described in the previous section, we need first to express u� in the variables of

the local, say qth, coordinate system. Such a transform is based on using the re-expansion formulae for the

singular vectorial solutions FðjÞ
ts due to translation of the coordinate system origin:
FðjÞ
ts ðr�p Þ ¼

X1
k¼0

X
jlj6 kþ1

gs�l
tk ðRpq; d�

pj; d
�
qjÞf

ðjÞ
kl ðr�q Þ; t ¼ 0; 1; 2; . . . ; j s j 6 t þ 1: ð24Þ
The formulae (24) follow directly from the corresponding result for the scalar harmonic functions F s
t

(Kushch, 1997a)
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F s
t ðrp; dpÞ ¼

X1
k¼0

X
jlj6 k

gs�l
tk ðRpq; dp; dqÞf l

k ðrq; dqÞ; Rpq ¼ Rp � Rq ð25Þ
and provide a series expansion of the field with a singularity in the point Op in a vicinity of the point Oq

where the field is regular. Expectably, the series in (24) contains the regular solutions f
ðjÞ
kl only. For the

explicit form of the re-expansion coefficients gs�l
tk , details of derivation and convergence analysis, see also

Kushch and Sangani (2000).

It is important to note that the functions F tþk
t (A.9) are introduced in such a way that the formula (25)

remains valid for the extended set of singular spheroidal harmonics F s
t including those defined by (A.9) for

jsj6 t þ 2. We apply (24) to all the sum terms in (22) but that one with p ¼ q which is written initially in the

variables of this local coordinate system. After some algebra, we find
u�ðr�q Þ ¼
X3

j¼1

X1
t¼0

X
jsj6 tþ1

½AðqÞðjÞ
ts FðjÞ

ts ðr�q Þ þ ðaðqÞðjÞts þ eðqÞðjÞts ÞfðjÞts ðr�Þ	; ð26Þ
where
aðqÞðjÞts ¼
X1
k¼0

X
jlj6 kþ1

XN
p¼1
p 6¼q

gl�s
kt ðRpq; d�

pj; d
�
qjÞA

ðpÞðjÞ
kl ð27Þ
and eðqÞðjÞts are the expansion coefficients of the linear part of (22) given by the formula (8), with replace d�
j to

d�
qj ¼ Rq=n

�
j0.

After the local expansion of u� in the vicinity of the point Oq is found, the remaining part of solving

procedure follows the way described in Section 2. In fact, by using the re-expansion formulae (24) we have

reduced the primary many-particle problem to a coupled set of N ‘‘a medium with one inclusion in the

inhomogeneous external field’’ problems. The resulting infinite set of linear algebraic equations are
UG
ðqÞ�
tl � AðqÞ

tl þUMðqÞ�
tl � ðaðqÞtl þ eðqÞtl Þ ¼

X
jsj6 tþ1

UM
ðqÞ�
tsl �DðqÞ

ts ;

TG
ðqÞ�
tl � AðqÞ

tl þ TMðqÞ�
tl � ðaðqÞtl þ eðqÞtl Þ ¼

X
jsj6 tþ1

TM
ðqÞ�
tsl �DðqÞ

ts ;

q ¼ 1; 2; . . . ;N ; t ¼ 0; 1; 2; . . . ; j l j 6 t þ 1;

ð28Þ
where a
ðqÞ
tl ¼ ðaðqÞðjÞts ; aðqÞðjÞts ; aðqÞðjÞts ÞT and aðqÞðjÞts are given by (27). Its approximate solution can be obtained, say,

by the truncation method, when the unknowns and equations with t6 tmax only are retained in (28). The
1

rgence of the matrix stress r�
z =S33 with tmax increased

X12 ¼ 2:1R X12 ¼ 2:2R X12 ¼ 2:5R

u ¼ 0 u ¼ p u ¼ 0 u ¼ p u ¼ 0 u ¼ p

3.500 3.500 3.458 3.458 3.393 3.393

4.079 3.518 3.821 3.447 3.510 3.370

4.593 3.485 4.074 3.417 3.554 3.359

4.944 3.447 4.215 3.395 3.570 3.356

5.154 3.419 4.283 3.382 3.576 3.354

5.271 3.401 4.313 3.375 3.579 3.354

5.334 3.392 4.325 3.373 3.579 3.354

5.368 3.386 4.330 3.371 3.579 3.354

5.387 3.384 4.331 3.371 3.579 3.354
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solution is convergent for tmax ! 1 provided that the non-touching conditions kRpqk > Rp þ Rq are satisfied

for each pair of inclusions. Thus, we can solve (28) for A
ðqÞ
tl and DðqÞ

ts with any desirable accuracy by taking

tmax sufficiently large. It is seen form Table 1 in Section 5 that the convergence rate is sufficiently high for a

whole range of the problem parameters excluding only the nearly-touching inclusions. Analysis of this
extreme case is, however, beyond the scope of this paper.
4. Spatially periodic array of inclusions

The third well-known model of composite we consider here is an unbounded medium containing a

spatially periodic array of inclusions. For the simplicity�s sake, we assume all the particles to be identical

and located in the nodes of simple cubic lattice with the period a. The elementary periodicity cell of such a

structure is the cube with side a containing one inclusion embedded. The matrix–inclusion interface con-
ditions are given by (2) whereas the loading parameter E has now a meaning of the macroscopic strain

tensor.
E ¼ hei ¼ 1

V

Z
V

edV ; ð29Þ
V being a volume of the periodicity cell. Alternatively, the governing parameter can be taken in the form of

macroscopic stress tensor, S ¼ hri ¼ 1
V

R
V rdV . Here, we consider macroscopically homogeneous stress

state of composite assuming both the E and S to be constant.

This model may be thought, in particular, as a limiting case of the ordered finite array in which the

number of particles N becomes infinitely large. Likewise, the appropriate form of solution for this model is
given by (22) where N ! 1. Taking the periodicity of solution pre-determined by the periodicity of

structure into account we find that A
ðqÞ
tl must have the same value for any q. Then, omitting this index in

(22) and (23), we write a formal solution as
u� ¼ E � r� þ
X3

j¼1

X1
t¼0

X
jsj6 tþ1

AðjÞ
ts
bFFðjÞ
ts ðr�Þ; ð30Þ
where
bFFðjÞ
ts ðrÞ ¼

X
p

FðjÞ
ts ðr� RpÞ ð31Þ
and summation is made over all the lattice nodes. Provided that bFFðjÞ
ts are the triply periodic functions, the

displacement vector (30) comply the condition (29). The method of summation and detailed convergence
analysis of the triple series (31) is given elsewhere (Kushch and Sevostianov, 2003). Here, we apply formally

the technique developed in Section 3 for a finite array of inclusions to (30) and obtain the resolving set of

equations in the form (28), with the superscript ðqÞ omitted, and
aðjÞts ¼
X1
k¼0

X
jlj6 kþ1

bggðl�sÞ
kt ðd�

j ÞA
ðjÞ
kl ; ð32Þ
where the matrix coefficients are the triple infinite (lattice) sums
bggðl�sÞ
kt ðdÞ ¼

X
p 6¼0

gðl�sÞ
kt ðRp; d; dÞ: ð33Þ
Now, we recognize that (33) are exactly the sums appearing in the conductivity problem solution for a
composite with transversely isotropic phases obtained by Kushch (1997a). There, convergence of the series



6378 V.I. Kushch / International Journal of Solids and Structures 40 (2003) 6369–6388
(33) was discussed and the fast summation technique has been developed. The only difference here is the

extended variation range of indices s and l in (33). Fortunately, these series converge, conditionally at least,

for all values of indices jsj6 t þ 1 and jlj6 k þ 1 provided that the non-touching condition a > 2R is sat-

isfied.
5. Numerical results

In this Section, we give a few numerical examples demonstrating computational efficiency and accuracy

of the method developed and showing, at the same time, how the structural parameters and phase an-

isotropy influence the microstress concentration in a composite. Noteworthy, numerical algorithm of the

method is rather simple and consists in calculating the matrix coefficients of linear system followed by

solving it with the standard linear solver routine. The typical number of unknowns retained in the resolving
set of equations varies from single-digit numbers to a few hundreds depending on complexity of the

problem being considered. This is a very moderate number in comparison with the tens and hundreds of

thousand equations in the 3D finite element analysis of similar problems which proves the above algorithm

to be highly efficient form the computational standpoint.

We begin our numerical analysis from the single inclusion problem considered in Section 2. Even this

simplest model has a number of parameters, they are five components of the matrix C�, five components of

the matrix Cþ, three components of the rotation matrix X and the particle radius R. In practical appli-

cations, it is often more convenient to use the so-called ‘‘technical’’ elastic constants, namely the Young
moduli Ei, the shear moduli Gij and the Poisson�s ratios mij rather than the components Cij of the elastic

stiffness tensor. In the case of transversely isotropic body, they are related to Cij by
G12 ¼ 1
2
ðC11 � C12Þ; G23 ¼ G13 ¼ C44;

E1 ¼ E2 ¼ 2
1

C11 � C12

�
þ C33

D

��1

; E3 ¼
D

ðC11 þ C12Þ
;

m13 ¼ m23 ¼ C13=ðC11 þ C12Þ; m12 ¼
E1

2

1

C11 � C12

�
� C33

D

�
;

ð34Þ
where D ¼ ðC11 þ C12ÞC33 � 2ðC13Þ2 and only five of these constants are independent. The elastic moduli
introduced by (34) are more physically tractable and so will be taken as the input parameters in our

numerical analysis. In particular, either E3=E1 or G13=G12 ¼ 2C44=ðC11 � C12Þ can be chosen as a measure

of anisotropy degree.

A complete parametric study of the problems considered above is not a subject of the present paper.

Although in all the above solutions no restrictions (but the particle-to-particle non-touching condition)

were imposed on the structure, phase properties and loading type, in the subsequent numerical study we

shall keep most of the parameters fixed and present the numerical data giving a general idea how the se-

lected structure parameters, namely distance between the particles, their relative position, misalignment of
the phase materials anisotropy axes and anisotropy degree affect the stress field around inhomogeneities.

First, uniaxial tension is the only external loading type being considered here. Next, we restrict rotation of

inclusion to the xz-plane: in this case, the only variable Euler�s parameter is the angle b between the Oz� and

Ozþ axes. To minimize number of the independent elastic constants, we put mþ12 ¼ m�12 ¼ 0:3, mþ13 ¼ m�13 ¼ 0:3,
G�

13 ¼ 1 and E1 ¼ 2:6. Two variable material-related parameters are the matrix anisotropy degree

A ¼ E�
3 =E

�
1 and the inclusion-to-matrix stiffness ratio, k. Thus, we have E�

3 ¼ AE�
1 , G

þ
13 ¼ kG�

13, E
þ
1 ¼ kE�

1

and Eþ
3 ¼ kE�

3 . Two extreme cases here are k ¼ 0 and 1, corresponding to the cavity and rigid particle. For

the elastic inclusion Eþ
3 =E

þ
1 ¼ A; i.e., we assume the inclusion�s anisotropy degree to be equal to that of the

matrix material.



Fig. 2. Stress r�
z variation along the cavity surface: (line 1) A ¼ 1; (line 2) A ¼ 2; (line 3) A ¼ 5; (line 4) A ¼ 10.
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First, we consider a medium with a single spherical cavity, k ¼ 0. In Fig. 2, the normalized stress

r�
z ðhÞ=S33 variation along the cavity surface meridian R ¼ 1, 06 h6 p=2, u ¼ 0 calculated for the anisot-

ropy parameter A equal to 1 (isotropic matrix), 2, 5 and 10 is shown by the lines 1–4, respectively. Ex-

pectably, the maximum stress r�
z is located at the cavity�s equator and grows up more than two times as A
Fig. 3. Stress r�
z variation along the matrix–rigid particle interface: (line 1) A ¼ 1; (line 2) A ¼ 2; (line 3) A ¼ 5; (line 4) A ¼ 10.
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varies from 1 to 10. The similar data for a medium containing one rigid inclusion ðk ¼ 1Þ are given in Fig.

3. By contrast with the cavity case, the stress concentration at the particle-matrix interface decreases with A
increased. In both Figs. 2 and 3, the line 1 represents the well-known Lame solution for an isotropic

medium being a trivial limiting case of the solution obtained in Section 2.
The interesting example is a medium containing a single elastic inclusion made of the same material as

the matrix does: Cþ ¼ C�. The matrix stress r�
z variation along the matrix–inclusion interface is plotted in

Fig. 4. The curve 1 corresponds to the trivial case of aligned Oz� and Ozþ axes ðb ¼ 0Þ where we have a

homogeneous material with no stress concentration: r�
z � S33. However, even a small misalignment of the

matrix and inclusion material anisotropy axes leads to significant peak stress growth. The lines 2–4 show

r�
z ðhÞ=S33 for b ¼ p=10, 3p=20 and p=2. In the last case, the stress concentration factor k33 ¼ max r�

z ðhÞ=S33

is equal to 2.45. The situation considered here is rather typical for the majority of polycrystalline materials

with misaligned anisotropic grains. As we have shown already, orientation factor can contribute conside-
rably to the microstructural stress and, thus, affect the material�s properties. The magnitude of this stress is

dependent on the material anisotropy degree A: in Fig. 5, k33 is plotted as a function the rotation angle b.
The curves 1–3 represent k33ðbÞ calculated for A ¼ 2, 5 and 10. It is seen from these plots that the max k33
can be estimated roughly as

ffiffiffi
A

p
. This observation is valid, however, for the specific material and loading

type: to investigate effect of anisotropy and orientation thoroughly, much more additional work has to be

done.

Now, we consider a solid containing two particles/cavities and investigate how the distance between

them influences the stress field around them. We assume the inhomogeneities to be identical with the centres
lying on the Ox� axis and the anisotropy axes aligned. The additional structure parameter in this problem is

a distance between the centres of inclusions, X12 ¼ kR12k. Remind that, unlike the one-particle case, so-

lution of this problem is an infinite series. For calculations, we retain in the theoretical solution a finite

number of harmonics with t6 tmax. To estimate accuracy of the numerical results obtained, we need to learn

about the convergence of the truncated solution with tmax increased. In Table 1, the values r�
z ðtmaxÞ cal-

culated in the equator points P1ðh ¼ p=2;u ¼ 0Þ and P2ðh ¼ p=2;u ¼ pÞ of the first cavity; k ¼ 0 and A ¼ 5.
Fig. 4. Stress r�
z variation along the matrix–inclusion surface as a function of the angle b between the matrix and inclusion anisotropy

axes: (line 1) b ¼ 0; (line 2) b ¼ p=10; (line 3) b ¼ 3p=20; (line 4) b ¼ p=2.



Fig. 5. Stress concentration factor k33 as a function of the angle b between the matrix and inclusion anisotropy axes: (line 1) A ¼ 2;

(line 2) A ¼ 5; (line 3) A ¼ 10.

V.I. Kushch / International Journal of Solids and Structures 40 (2003) 6369–6388 6381
The P1 is the point nearest to the other inhomogeneity: as a result, stress in this point has a maximum

whereas the convergence rate is lower than at the opposite, far side of pore. It is clearly seen from the table

that the convergence rate is slowing down as the cavities approach each other: so, for X12 ¼ 2:5R the value

tmax ¼ 10 provides four-digit accuracy of stress evaluation. For the nearly located cavities X12 ¼ 2:1R, an
estimated relative error of r�

z does not exceed 1% for tmax P 15. Based on this analysis, the harmonics up to

tmax ¼ 15 were retained in the subsequent computations.
The stress concentration factor k33 in a solid with two spherical cavities is given in Table 2 as a function

of the anisotropy degree A and relative distance between the centres of cavities, X12=R. In the single cavity

limit ðX12 ¼ 1Þ, the peak r�
z stress values are the same as shown in Fig. 2; with X12 decreased, we observe

considerable growth of k33, which is, however, slightly slower at higher A values. For example, the ratio

k33ð2:1Þ=k33ð1Þ is equal to 1.75 for isotropic matrix and 1.55 for A ¼ 10. The distance between two rigid

particles has even more prominent effect on the stress concentration in the matrix. The stress concentration

factor k11 ¼ max r�
x ðhÞ=S11 values due to the uniaxial tension in x-direction are given in Table 3. Here, the

ratio k11ð2:1Þ=k11ð1Þ is about 6 and, surprisingly, depends on A only marginally.
The geometry of our third model, being a simple cubic array of particles embedded in the transversely

isotropic matrix can be defined either by the distance a between the neighboring particles or by the volume

content c of dispersed phase c ¼ 4
3
pðR=aÞ. To be consistent with previous analysis, we take the averaged
Table 2

Stress concentration factor k33 ¼ maxr�
z ðhÞ=S33 in a solid with two spherical cavities

A X12=R ¼ 1 X12=R ¼ 2:5 X12=R ¼ 2:3 X12=R ¼ 2:2 X12=R ¼ 2:1

1.0 2.05 2.23 2.54 2.87 3.58

2.0 2.47 2.68 3.00 3.37 4.25

5.0 3.32 3.58 3.92 4.33 5.39

10.0 4.27 4.59 4.97 5.42 6.61



Table 3

Stress concentration factor k11 ¼ maxr�
x ðhÞ=S11 in a solid with two rigid spherical inclusions

A X12=R ¼ 1 X12=R ¼ 2:5 X12=R ¼ 2:3 X12=R ¼ 2:2 X12=R ¼ 2:1

1.0 2.02 3.96 5.57 7.85 13.1

2.0 2.00 3.98 5.58 7.42 12.3

5.0 2.01 3.99 5.52 7.28 11.9

10.0 2.01 4.0 5.53 7.27 11.9
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stress tensor S ¼ hri rather than E ¼ hei as a governing parameter of the problem. In order to simulate the
macroscopic uniaxial tension of composite, components of the tensor E were chosen in a way that the

condition Sij ¼ di3dj3 is satisfied. The curves in Fig. 6 show the matrix stress r�
z =S33 variation along

the matrix–inclusion interface in the composite with A ¼ 3 and k ¼ 100.
Fig. 6. Stress r�
z variation along the matrix–inclusion interface in the periodic composite with A ¼ 3 and k ¼ 100: (line 1) c ¼ 0;

(line 2) c ¼ 0:15; (line 3) c ¼ 0:30; (line 4) c ¼ 0:45.

Table 4

Stress concentration factor k33 in a composite with elastic spherical inclusions, A ¼ 3

k c ¼ 0 c ¼ 0:15 c ¼ 0:30 c ¼ 0:45

0.1 2.38 2.50 2.94 3.07

0.5 1.48 1.55 1.66 1.83

1.0 1.0 1.0 1.0 1.0

2.0 1.22 1.42 1.49 1.58

10.0 1.48 2.00 2.45 3.76

100.0 1.55 2.21 2.92 6.47
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The results obtained for the composite with a volume fraction of dispersed phase c ¼ 0:1, 0.15, 0.3 and

0.45 are shown by the lines 1–4, respectively. It is seen from these plots that the maximum tensile stress r�
z is

localized in area between the hard particles and for c ¼ 0:45 is more than four times higher than that in the

solid with a single inclusion. The values of stress concentration factor k33 as a function of c and k are given
in Table 4.

As the parametric study shows, ok33=oc is always positive, no matter softer or harder are the particles in

comparison with the matrix material.
6. Conclusions

The accurate and efficient analytical method has been developed to study the microstress field in a
particulate composite with transversely isotropic elastic phases. The essence of method is the multipole

expansion technique reducing the complicated primary boundary-value problem for 3D multiple-connected

domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical efficiency.

The method has been applied systematically to solve for stress in three basic models of particulate com-

posite, namely a solid containing one, a finite array and an infinite spatially periodic array of spherical

inclusions. The solution obtained for a single inclusion problem is finite-form and exact; for the many-

particle problems, the method provides an asymptotically exact series solution. The numerical results are

given demonstrating an accuracy and numerical efficiency of the method and disclosing the way and extent
to which the selected structural parameters influence the stress concentration at the matrix–inclusion in-

terface.

The method exposed above is flexible enough to be generalized in many ways. The possible next steps in

developing the given approach include the detailed parametric study of the microstress concentrations and

the macroscopic elastic properties of composite with transversely isotropic phases based on more realistic

model of microstructure. Also, the method with minor modifications (Kushch, 1997a) can be applied to

study the effect of phase anisotropy in the composites with ellipsoidal inclusions and penny-shaped cracks.
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Appendix A. Partial solutions of the equilibrium equations of transversely-isotropic elastic solid

The well known fact (e.g. Podil�chuk, 1984) is that a solution of the equilibrium equations r � r ¼ 0 can

be represented by means of three potential functions
ux ¼
oU1

ox
þ oU2

ox
þ oU3

oy
; uy ¼

oU1

oy
þ oU2

oy
� oU3

ox
; uz ¼ k1

oU1

oz
þ k2

oU2

oz
: ðA:1Þ
These functions satisfy the equation
o2

ox2

�
þ o2

oy2
þ mj

o2

oz2

�
Uj ¼ 0; j ¼ 1; 2; 3; ðA:2Þ
where m3 ¼ 2C44=ðC11 � C12Þ whereas m1 and m2 are the roots of equation
C11C44m
2 � ½ðC44Þ2 � C11C33 � ðC13 þ C44Þ2	m þ C33C44 ¼ 0: ðA:3Þ
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Expressions of k1 and k2 in (A.1) are
kj ¼
C11mj � C44

C13 þ C44

¼ mjðC13 þ C44Þ
C33 � mjC44

; j ¼ 1; 2: ðA:4Þ
In the case m1 6¼ m2, representation (A.1) is general. A slightly modified, complex-valued form of general

solution was suggested by Fabrikant (1989).
Now, we introduce new spatial variables xj ¼ x, yj ¼ y, zj ¼ z=

ffiffiffiffi
mj

p
; in these variables,
o2

ox2j

 
þ o2

oy2j
þ o2

oz2j

!
Uj ¼ 0: ðA:5Þ
The sets of singular and regular partial solutions are given by (A.1), with the potential functions
UðjÞ
ts ¼ 1

ð2t þ 1Þ ½F
s
tþ1ðrj; djÞ � F s

t�1ðrj; djÞ	;

/ðjÞ
ts ¼ 1

ð2t þ 1Þ ½f
s
tþ1ðrj; djÞ þ f s

t�1ðrj; djÞ	;

t ¼ 0; 1; 2; . . . ; jsj6 t þ 1;

ðA:6Þ
where
F s
t ðr; dÞ ¼

ðt � sÞ!
ðt þ sÞ!Q

s
t ðnÞP s

t ðgÞ expðisuÞ;

f s
t ðr; dÞ ¼

ðt � sÞ!
ðt þ sÞ! P

s
t ðnÞP s

t ðgÞ expðisuÞ;
ðA:7Þ
are the singular and regular, respectively, harmonic functions obtained by separation of variables in the

Laplace equation written in the spheroidal coordinates Hobson (1931), P s
t and Qs

t are the associated

Legendre functions of the first and second kind, respectively. In (A.6), ðnj; gj;ujÞ for mj < 1 are the modified

prolate spheroidal coordinates
xþ iy ¼ dj �nnj�ggj expðiujÞ; z ¼ ffiffiffiffi
mj

p
zj ¼

ffiffiffiffi
mj

p
djnjgj;

�nnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnjÞ2 � 1

q
; gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgjÞ

2
:

q
ðA:8Þ
In the case mj > 1, one has to use the oblate spheroidal coordinates instead.
Note that, according to Hobson (1931), F s

t ¼ f s
t � 0 for j s j> t; this condition, however, makes it im-

possible to represent some of the singular solutions in the form (A.1) and (A.6). To resolve for this diffi-

culty, we exploit the Podil�chuk�s (1984) idea and introduce the following, additional to (A.7), functions of

the form
F tþk
t ðr; dÞ ¼ 1

ð2t þ kÞ!Q
tþk
t ðnÞP tþk

t ðgÞ exp½iðt þ kÞu	; k ¼ 0; 1; 2; . . . ; ðA:9Þ
where
P tþk
t ðpÞ ¼ ð2t þ kÞ!

ð1� p2ÞðtþkÞ=2

Z 1

p

Z 1

p
� � �
Z 1

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
tþk

PtðpÞðdpÞtþk ¼ ð2t þ kÞ!
ð1� p2ÞðtþkÞ=2 Itþk
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for 06 p6 1; for p < 0, P tþk
t ðpÞ ¼ ð�1ÞkP tþk

t ð�pÞ. We have for k ¼ 0
It ¼
Z 1

p

Z 1

p
� � �
Z 1

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t

PtðpÞðdpÞt ¼
ð1� p2Þt

2tt!
;

Itþ1 ¼
Z 1

p
It dp ¼ 1

2tt!

Xt

k¼0

ð�1Þk

ð2k þ 1Þ
n

k

 !
ð1� p2kþ1Þ;

Itþ2 ¼
Z 1

p
Itþ1 dp ¼ 1

2tt!

Xt

k¼0

ð�1Þk

ð2k þ 1Þ
n

k

 !
1

�
� p � ð1� p2kþ2Þ

ð2k þ 2Þ

�
; etc:
It is fairly straightforward to show that the functions (A.9) are the singular solutions of the Laplace

equations: unlike (A.7), they are discontinuous at z ¼ 0. In the general series solution, however, these

breaks cancel each other and give the continuous and differentiable expressions of the displacement and

stress fields; for more discussion on this point, see Section 2. Note that the functions similar to F tþ1
t were

used by Smith (1984) to solve the problem for a medium with a single penny-shape crack.

In (A.6), parameters of the modified spheroidal coordinate system (A.8) are chosen in a way that

nj ¼ nj0 ¼ const at the surface r ¼ R; i.e., S is the n-coordinate surface in each coordinate system introduced

by (A.8). We provide this by defining
dj ¼ R=nj0; nj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj=jmj � 1j

q
:

In this case, moreover, we have gj ¼ h and uj ¼ u for r ¼ R, where ðr; h;uÞ are the ordinary spherical

coordinates corresponding to the Cartesian ones ðx; y; zÞ.
This is the key point: no matter how complicated solution in the bulk is, at the interface we get the linear

combination of regular spherical harmonics Y s
t ðh;uÞ ¼ P s

t ðcos hÞ expðisuÞ. Under this circumstance, satis-

faction the contact conditions at interface is the nothing more than standard algebra. Now, substituting /ðjÞ
ts

(A.6) into (A.1) and using the properties of the functions (A.7)
d
ð2t þ 1Þ

o

ox

�
� i

o

oy

�
½f s

tþ1ðr; dÞ þ f s
t�1ðr; dÞ	 ¼ f s�1

t ðr; dÞ;

d
ð2t þ 1Þ

o

ox

�
þ i

o

oy

�
½f s

tþ1ðr; dÞ þ f s
t�1ðr; dÞ	 ¼ �f sþ1

t ðr; dÞ;

d
ð2t þ 1Þ

o

oz
½f s

tþ1ðr; dÞ þ f s
t�1ðr; dÞ	 ¼ f s

t ðr; dÞ;

ðA:10Þ
we obtain the following set of regular vectorial solutions:
fðjÞts ðrÞ ¼ f s�1
t ðrj; djÞe1 � f sþ1

t ðrj; djÞe2 þ
kjffiffiffiffi
mj

p f s
t ðrj; djÞe3; j ¼ 1; 2;

fð3Þts ðrÞ ¼ f s�1
t ðr3; d3Þe1 þ f sþ1

t ðr3; d3Þe2; t ¼ 0; 1; 2; . . . ; j s j 6 t þ 1;

ðA:11Þ
where the complex Cartesian basis vectors are e1 ¼ ðex þ ieyÞ=2, e2 ¼ ðex � ieyÞ=2 and e3 ¼ ez. In particular,

f
ðjÞ
1s describe linear deformation of the transversely isotropic solid
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2d1f
ð1Þ
10 ¼ �xex � yey þ 2

k1
m1

zez;

d1ðfð1Þ11 þ fð1Þ1;�1Þ ¼
iffiffiffiffi
m1

p ðzey þ k1yezÞ;

d1ðfð1Þ11 � fð1Þ1;�1Þ ¼
1ffiffiffiffi
m1

p ðzex þ k1xezÞ;

2d1ðfð1Þ12 þ fð1Þ1;�2Þ ¼ ðxex � yeyÞ;

2d1ðfð1Þ12 � fð1Þ1;�2Þ ¼ iðxey þ yexÞ;

2d2f
ð2Þ
10 ¼ �xex � yey þ 2

k2
m2

zez;

2d3f
ð3Þ
10 ¼ iðyex � xeyÞ; d3 f

ð3Þ
11

�
þ fð3Þ1;�1

�
¼ 1ffiffiffiffi

m3
p zex;

d3ðfð3Þ11 � fð3Þ1;�1Þ ¼
iffiffiffiffi
m3

p zey ;

ðA:12Þ
the displacement vector u0 ¼ ÊE � r can be written as a linear combination of functions (A.12).

At the spherical surface r ¼ R, the functions fðjÞts ðrÞ (A.11) take the form
fðjÞts ðrÞ jS¼ Ps�1
t ðnj0Þvs�1

t e1 � Psþ1
t ðnj0Þvsþ1

t e2 þ
kjffiffiffiffi
mj

p Ps
t ðnj0Þvs

te3;

fð3Þts ðrÞ jS¼ P s�1
t ðn30Þvs�1

t e1 þ P sþ1
t ðn30Þvsþ1

t e2;

ðA:13Þ
where vs
t ¼

ðt�sÞ!
ðtþsÞ! Y

s
t ðh;uÞ, readily to be substituted in the interfacial boundary conditions (2) for displace-

ments.

To satisfy the stress boundary conditions, we need the similar expressions for the traction vector

Tn ¼ r � n. After somewhat involved algebra, we obtain the following representation of TnðfðjÞts Þ at the

surface S:
dj
C44

TnðfðjÞts Þ
��
S
¼ 1ffiffiffiffi

mj
p ðk1

�
þ 1ÞP 0s�1

t ðnj0Þ �
ðs� 1Þ

nj0

ðmjC12 � kjC13Þ
mjC44

Ps�1
t ðnj0Þ

�
vs�1
t e1 �

1ffiffiffiffi
mj

p ðk1
�

þ 1ÞP 0sþ1
t ðnj0Þ

þ ðsþ 1Þ
nj0

ðmjC12 � kjC13Þ
mjC44

P sþ1
t ðnj0Þ

�
vsþ1
t e2 þ ðk1 þ 1ÞP 0s

t ðnj0Þvs
te3; j ¼ 1; 2; ðA:14Þ

d3
C44

Tnðfð3Þts Þ
��
S
¼ 1ffiffiffiffi

m3
p P 0s�1

t ðn30Þ
"

þ ðs� 1Þ n30

ðn30Þ2
P s�1
t ðn30Þ

#
vs�1
t e1

þ 1ffiffiffiffi
m3

p P 0sþ1
t ðn30Þ

"
� ðsþ 1Þ n30

ðn30Þ2
P sþ1
t ðn30Þ

#
vsþ1
t e2 þ

1ffiffiffiffi
m3

p
s

n30

P s
t ðn30Þvs

te3:
The results exposed above imply m1 6¼ m2. When m1 ¼ m2, solution (A.1) is not general because of

fð1Þts � fð2Þts . In this case, however, the general solution of r � r ¼ 0 can be represented as
ux ¼
oU1

ox
þ z

oW
ox

þ oU3

oy
; uy ¼

oU1

oy
þ z

oW
oy

� oU3

ox
;

uz ¼
oU1

oz
þ z

oW
oz

� C13 þ 3C44

C13 þ C44

W
ðA:15Þ
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or, in the vectorial form,
u ¼ rU1 þr� ðU3ezÞ þ zr
�

� C13 þ 3C44

C13 þ C44

ez

�
W;
where the potential function W satisfies Eq. (A.2) with m ¼ m1. To get the complete set of independent

solutions (A.11), fð2Þts can be taken in the form
fð2Þts ðrÞ ¼ d1 zr
�

� C13 þ 3C44

C13 þ C44

ez

�
f s
t ðr1; d1Þ þ

ffiffiffiffi
m1

p
d1ðn10Þ2rf s

t�1ðr1; d1Þ: ðA:16Þ
With the last term added, expression of fð2Þts at the surface r ¼ R is rather simple:
fð2Þts ðrÞ jS ¼
ffiffiffiffi
m1

p n10

ðt þ sÞ P
s�1
t�1 ðn10Þvs�1

t e1 �
ffiffiffiffi
m1

p n10

ðt þ sþ 2Þ P
sþ1
t�1 ðn10Þvsþ1

t e2

þ n10

ðt þ sþ 1Þ P
s
t�1ðn10Þ

�
� C13 þ 3C44

C13 þ C44

P s
t ðn10Þ

�
vs
te3: ðA:17Þ
For the expression of the corresponding traction vector, see Podil�chuk (1984).

The explicit form of the singular solutions FðjÞ
ts is given by Eq. (A.11) with the replace f s

t on F s
t . To get the

expression of FðjÞ
ts and TnðFðjÞ

ts Þ at the interface, one has to substitute P s
t ðnÞ by Qs

t ðnÞ in (A.13) and (A.14),

respectively.
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