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Abstract

The accurate series solution have been obtained of the elasticity theory problem for a transversely isotropic solid
containing a finite or infinite periodic array of anisotropic spherical inclusions. The method of solution has been de-
veloped based on the multipole expansion technique. The basic idea of method consists in expansion the displacement
vector into a series over the set of vectorial functions satisfying the governing equations of elastic equilibrium. The re-
expansion formulae derived for these functions provide exact satisfaction of the interfacial boundary conditions. As a
result, the primary spatial boundary-value problem is reduced to an infinite set of linear algebraic equations. The
method has been applied systematically to solve for three models of composite, namely a single inclusion, a finite array
of inclusions and an infinite periodic array of inclusions, respectively, embedded in a transversely isotropic solid. The
numerical results are presented demonstrating that elastic properties mismatch, anisotropy degree, orientation of the
anisotropy axes and interactions between the inclusions can produce significant local stress concentration and, thus,
affect greatly the overall elastic behavior of composite.
© 2003 Published by Elsevier Ltd.
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1. Introduction

Evaluation of the stress caused by the mismatch in elastic properties of matrix and inhomogeneities
is one of the key problems in composite mechanics. Indeed, given the stress and strain fields in the bulk
of composite material one can integrate them to determine the macroscopic response, or “effective”
elastic properties. On the other hand, information on stress concentration, i.e. location and magnitude
of peak microstress, provides the necessary basis on which the composite’s strength theories can be built
up.

For the particulate composites with isotropic constituents, there is a variety of models and methods to
evaluate both the stress state and macroscopic elastic moduli. When the volume fraction of disperse phase is
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low, even simple one-particle models based on the well-known Lame and Eshelby’s solutions give a
reasonable approximation of stress fields in and around the inclusions. With the volume content increasing,
interaction between the disperse phase particles exerts more and more pronounced effect on the composite’s
behavior. To account for this effect properly, the models of two or more interacting inclusions in a solid
should be considered. Various accurate and approximate methods to analyze the many-particle models
were proposed by Moskovidis and Mura (1975), Chen and Acrivos (1978), Rodin and Hwang (1991), Hori
and Nemat-Nasser (1993) and Kushch (1996), among others. The higher dispersion volume content is, the
more sophisticated models and methods are to be applied to predict the composite’s behavior. One widely
used approach consists in considering the periodic model structure with a periodicity cell containing from
one to several particles. This model is advantageous in that it provides a natural way, through the periodic
boundary conditions on the opposite cell facets, to account for interactions among a whole infinite array of
inhomogeneities. The periodic composite with rigid spherical particles was studied by Nunan and Keller
(1984) by the method of singular integral equations, with the elastic ones by Kushch (1985) and Sangani
and Lu (1987) who used the multipole expansion method. For the composites with more general ellipsoidal
shape of particles an approximate solution for the effective moduli has been obtained by Iwakuma and
Nemat-Nasser (1983). Kushch (1997b) has considered more realistic structural model of composite and
developed an accurate analytical, multipole expansion-based method of solution. In the last work, the
microstress concentrations were investigated as well.

By contrast with the isotropic case, a very few papers can be found in literature devoted to the stress
analysis in a particle reinforced composite with anisotropic phases; in these works, the simple “dilute
composite’’ models only were considered. The probable reason is that an analysis of this problem requires
more complicated math to be developed and applied. The most work done up to date in this area are based
on using the Green’s functions (point body force solution) for an infinite solid. So, Mura (1982) has derived
the Eshelby’s type solution for a single inclusion in an anisotropic medium. This work does not provide,
however, the explicit analytic expressions for the internal stress distribution similar to those obtained by
Eshelby in the isotropic case. In the particular but practically important case of transversely isotropic
elastic properties, Pan and Chou (1976) have been found analytical expressions for the Green’s functions
and their derivatives. Based on their findings, Withers (1989) has applied the Eshelby’s method to calculate
the elastic field about an ellipsoidal inclusion embedded within a transversely isotropic matrix of the same
elastic constants. In the Willis’ (1975) work, two interacting spherical voids in an anisotropic elastic solid
were considered and the problem was formulated in terms of integral equation for the “transformation
stress” in equivalent homogeneous inclusion. Using the iterative perturbation technique, an explicit
approximate solution has been obtained for polynomials up to second degree.

An alternate approach has been proposed by Podil’chuk (1984) (see also the recent Podil’chuk’s (2001)
survey paper) who considered a solid with a single inclusion subjected to the polynomial external load. His
method is based on the observation that the governing equations describing steady stress in the transversely
isotropic solid allow separation of variables in the properly introduced curvilinear coordinates. The
resulting rigorous series solution is expressed in terms of the associated Legendre functions. It should be
noted, however, that the original solution is given by Podil’chuk (1984) in a scalar form which makes it
rather difficult to analyze and utilize.

In the present paper, the Podil’chuk’s method is revised and expanded on the class of many-particle
models of composite with transversely isotropic phases. To expose the basic technique of method, we start
with the one-particle problem and obtain the exact analytical solution, written in a compact matrix-vector
form, in the case of arbitrarily oriented anisotropy axes of the matrix and inclusion materials. Noteworthy,
in all mentioned above works the anisotropy axes were assumed to be aligned. Then, in the subsequent
sections, we apply systematically the method developed to obtain the accurate solutions for a solid con-
taining a finite array and infinite periodic, lattice type array of inclusions. The numerical results are pre-
sented and discussed in the last section. They demonstrate an effect on stress concentration of the selected
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structural parameters of composite as well as accuracy and computational efficiency of the method
developed.

2. Medium with a single inclusion

In the Cartesian coordinate system Oxyz with Oz axis aligned with the anisotropy axis of transversely
isotropic material, the generalized Hook’s law ¢ = C - ¢ has a form

oy = Cpigy + Ciagy + Cize;, Ty = 2C448,,
o, = Cpec + Ciig, + Cpae, 12 = 2Cx e, (1)
0. = Cize, + Ci3e, + Cx3e., Ty = (C1y — Ch2)eyy

Here, two-indices notation C;; = C;;; is adopted. The components of stress tensor ¢ satisfy the equi-
librium equations V - ¢ = 0 and the small elastic strain tensor ¢ is related to the displacement vector u by
=1[Vu+ (Vu)'].
Let us consider an infinite solid with a single spherical inclusion of radius R embedded. Both the matrix
and inclusion are elastic and transversely isotropic; at the interface S, the conditions of perfect mechanical
contact

(' —u)lg =0, (Ta(u") —Ta(u))ls =0, 2)

are imposed, where T, = ¢ - n the normal traction vector and n is the outer normal unit vector at the surface
S. Here and below, all the parameters associated with the matrix and inclusion are denoted by the su-
perscript “—” and “+”, respectively. The stress state of a medium is induced by the remote constant stress
tensor S or strain tensor E = C™' - S prescribed.

We assume the anisotropy axes of both the matrix and inclusion materials to be arbitrarily oriented and
introduce the material-related Cartesian coordinate systems Ox~y~z~ and Ox"y"z" with common origin in
the centre of inclusion. The point coordinates and the vector components in these coordinate systems are
related by

= Q.x; T =Qu; (3)

gy 1 g¥jo

where Q is the rotation matrix: Q" = Q' and detQ = 1. Transformation of the complex Cartesian vectors
e; defined in Appendix A, uses the formula

1 1 0
Ql*] s where @* =D'QD and D=| -i i 0]. (4)
0 0 1

The disturbance field produced by the inclusion is vanishing at infinity and, for the external load pre-
scribed,u” — E -r as | r |— co. We decompose the displacement vector in the matrix domain into a sum of
regular part, or far field, for a homogeneous space Uy = E - r and singular disturbance, or near field Uy,
produced by the inhomogeneity. The regular part U, satisfies the equilibrium equations identically; the
disturbance field U; vanishes at infinity and, therefore, its series expansion contains the singular solutions
Fg) of the governing equations (see Appendix A) only. Thus, we have

v =Uy+U =E-r +ZZ > ADFD(x (5)
J=1 =0 [s|<t+1

On the contrary, the displacement field within the inclusion u* has no singularity and thus can be ex-
panded into a series over the regular solutions fg) (A.11):
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=YY Y

J=1 =0 |s]<r+l

DY) f(/ (6)

ts Tts
where Dt@ as well as Ag) in (5) are the expansion coefficients to be determined from the contact condi-
tions (2).

Expression (6) is written already in the spheroidal coordinates and the similar expansion of the regular
part U, follows from the formulae (A.12). After some algebra, we get

Exr =3 % > elf)u) (7
=1 =0 |s|<irl
where
e(l) _ df4v;[E32V* + ki(Ell +E22)]
10 kl—v2— _ kz_v]_ 372 2 )
VAT .
6511) = _5911 =1r1 = L (Ey3 —iEn),
1
6512) = ‘35{)72 = (Ey — Ex — 2iE),), (8)
@) vy dy R
- % g k- (Eyy + Ex)l,
0= T _kz_vl_[ 3V +k (En + Ex)]

ey =el, = \/Ed3 (1 — k) (Ers —iE3),
all other coefficients eg)
case of equal roots v; and v, of Eq. (A.3), one has to use f'? and F'?
(5)—(7) and all the subsequent formulae.

To solve for the expansion coefficients, we note first that the functions F, &) are, in fact, the fundamental
solutions representing action of the point body forces in an infinite solid. Because no body forces is sug-
gested in the problem statement, we get immediately A(()ls) = (. The remaining coefficients Ag) and Dt(j) will be
determined from the 1nterface boundary conditions (2). To obtain a resolvmg set of equations for the
unknowns A[S and Dm we make use the representation (A.13) of the functions f and F on the surface

r = R, rewritten in the compact form as

are equal to zero. For definiteness sake, we assume here and below v; # v,; in the
in the form (A.16) rather than (A.11) in

3
B ls= D UGir'e, 1 ls= ZUM% €, 9)
=
where
(&) (&) 1 (E5)
UG, = {UG/} = ;Q"“(ém) —kQ:'“(ézo) 0" (&) |
—0}(&) —=0i(¢ 0
\/WQ( 10) mQ(@zo) "
P (&) P (&) P (&)
UM, = {UMY} = ;sz(flo) —kESH(fzo) PHl(&y)
! 2
ﬁPf(ém) ﬁl’f(ém) 0

and s; =s—1, s, = s+ 1 and s; = 5. In these notations,
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ZUGQ’“ 1 +UM11 etl ]Xf"(f),q))ej (11)

o=1

Z UM+ D

a=1

ACRTS (12)

Note that u= (11) and ut (12) are still written in the different coordinate systems. Therefore before
substituting them into (2), u™ has to be expressed in terms of the variables 0, ¢~ and vectors e;. For this
purpose, we apply the Bateman’s transformation formula of the surface spherlcal harmonics due to rotation
of coordinate basis (Bateman and Erdelyi, 1953):

2070 =3 YD sty 10 o), (13)

o< (t+ s

where S5/ are the spherical harmonics in four-dimensional space and w is the vector of Euler’s parameters
related to the rotation matrix Q by

Wi —wl—wi4+wl  2(waw; — wiwy) 2(wiwy + wiwy)
Q= 2(wawy +wiwg) Wi —wi—w3+wi  2(wiws —wowy) |- (14)
2(wiwy — wiwy) 2(wiws — wawy) W% — W% — wg + wﬁ

Applying (13) and (4) to (12) gives

3 00
:ZZ 11 | ;tmt l/ ZUMIHD (0 , P ) (15)

j=1 =0 [l|<t+1 [ =1 \<t+1

Now, we substitute u~ (11) and transformed expression of u* (15) into the first of conditions (2) and
make use of the orthogonality property of spherical harmonics y; on the surface S to decompose vectorial
functional equality u™ = u~ into a set of linear algebraic equations. It can be written in the compact matrix-
vector form as

UG, -A;+UM, e, = > UM, -D,, t=0,1,2,..., || <t+]1, (16)
Is| < t+1
where
* i * (t+ l) sist=1;
UMt\l_WtYlUMtv’ VVL{I ‘Qi (t—|— ), ;t ' '(W)7
17
Ay = ( t1)7A£12)7A§l3>)T7 D, = (DflUﬂDEIZ)?D;l}))T and ( )

(1) J2) BNT
€y = (etl 1y €15 € ) :

Obtaining the second set of equations follows the same procedure where, instead of (A.13), the repre-
sentation (A.14) of the normal traction vectors T,(fY) and T,(f?) on the surface » = R has to be utilized.
After transformations, we obtain

TG, -Ay+TM, e, = > TM;,-D,, (18)

|s] <r+1

where TM, = WMTM Form of the matrices TG, and TM,; 1s clear from (A.14). Egs. (16) and (18)
together form a complete set of linear equations from where A,Y and D,V can be determined. To reduce
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dimension of the linear system to be solved, one can eliminate A, to get the set of equations involving the
unknowns D, only:

> (TG, T™;, — (UG,) UM,

tsl
|s] <r+1

t=0,1,2,..., | 1] <t+1. (19)

J- Dy = [(TG,)"'TM;, — (UG,)"'UM, | - e,

After we have solved (19) for Dy, either (16) of (18) can be applied to determine A,; and, thus, accomplish
solution of the problem.

An attempt to solve the linear system (19) discovers, however, that its determinant is equal to zero. The
reason 1s that at a given ¢, some of the functions f at | s | > ¢ are linearly dependent: e.g., ft o+ fi 1 and
f;z,)ﬂ ~ f, 2+1- Really, we have 3(2¢ + 3) vectorial solutions of order ¢ introduced whereas the number of
independent functions is equal to 3(2¢ + 1) (remind, the Cartesian components of f are the polynomials of
order t (A.11) and f} = 0 for L s> 0. Due to the same redson not all the e, are represented in (8). Adding
six additional constraints Dt 1, =0 D, “+1) =0 and p° =0 to (19) gives, finally, a well-posed set of
linear equations possessing an unique solut1on

It is also straightforward to show (Podil’chuk, 1984) that, although the functions F, L(e+1) (six in total for
a given ¢) are discontinuous at z = 0, the resultlng displacement u~ (5) is continuous and differentiable
provided we have the expansion coefficients A,S determined from (16) or (18). In fact, we have there exactly
6 equations (with |/| = + 1) to determine 4" ++(+1) iIn @ way that the breaks in each separate function FY) (1)
cancel each other. Alternatively, one can utilize these 6 equations to introduce, from the very beginning, a
set of 3(2¢+ 1) singular continuous solutions of order ¢, being, naturally, the linear combinations of FE{>
This approach, however, is disadvantageous in that the introduced in such a way singular partial solutions
have rather complicated structure which results, in turn, in much more involved theory as compared with
that presented above.

And, to complete this section, we note the following. First, because e,; = 0 for ¢ # 1 in (8), only Am and

t:tt+1

D(l? are non-zero in the solution obtained. Moreover, in the case of aligned anisotropy axes Q =1 and

Wi =6, ;7051 and the system (19) breaks down onto 5 separate sets of each value of index s to give a compact
form of the Podil’chuk’s (1984) solution. The solution we have found for the simple loading type is of finite
form and exact. However, all the theory developed is valid and the solution remains exact for the arbitrary
polynomial external load. In this case, the series expansions (6) and (8) contains the higher (# > 1) har-
monics as well. In the subsequent sections, this feature will be used to derive accurate, asymptotically exact

solutions of the many-particle problems.

3. Finite array of inclusions

Let us consider now an unbounded domain containing N non-touching spherical particles of radius R,
with the centres located in the points O,, ¢ = 1,2, ..., N and the elastic stiffness tensors C;. We introduce
the local material-related coordinate systems Ox;y,z, which origin and orientation with respect to the
global Cartesian coordinate system Ox~y z~ is defined by the vector R, and the rotation matrix €, (Fig. 1).

The matrix—inclusion interface boundary conditions are

(uy —u) [5,=0, (Ta(u;) = To(u)) [5,=0, ¢=12,....N, (20)
the stress state of the inhomogeneous medium is governed, as before, by the constant load applied at
infinity.
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Fig. 1. Geometry of the many-particle model.

In (20), u; is the displacement vector in the volume of gth inclusion which, by analogy with (6) can be
written as

o0

u=> > > DIVl (21)

J=1 =0 |s|<r+1

To construct the solution in the multiply-connected matrix domain, we shall follow the procedure
described by Kushch (1996). According to the generalized superposition principle, the displacement vector
u~ can be written as a sum of linear far field and the disturbance fields induced by each separate inclusion:

u=E-r1r + ZUp(r;), r,=r —R, (22)

By analogy with (5), each singular term U, allows the series expansion in the form

3

U) =33 3 A00RI(r), (23)

J=1 =0 |s|<t+1

where A,(jf )0 as well as Dﬁf)m in (21) are the series expansion coefficients to be found from the boundary
conditions (20). It is evident that for u™ taken in the form (21) and (22), the condition u~ — E - r at infinity
is satisfied.

Note that the separate terms of the sum in (21) are written in the different coordinate systems. To enable
application the procedure described in the previous section, we need first to express u~ in the variables of
the local, say gth, coordinate system. Such a transform is based on using the re-expansion formulae for the
singular vectorial solutions Fg) due to translation of the coordinate system origin:

FOe)=>" " /Ry d, d )i (x,), t=012,... |s|<t+l (24)
k=0 |I| <k+1

The formulae (24) follow directly from the corresponding result for the scalar harmonic functions F’
(Kushch, 1997a)



6376 V.I. Kushch | International Journal of Solids and Structures 40 (2003) 6369-6388

Fi(rp,d, Z Z M " (Ryy, dp, d, )fkl(rq»dq)v R, =R, - R, (25)

0 |I[<k

and provide a series expansion of the field with a singularity in the point O, in a vicinity of the point O,
where the field is regular. Expectably, the series in (24) contains the regular solutions f,g only. For the
explicit form of the re-expansion coefficients 7%/, details of derivation and convergence analysis, see also
Kushch and Sangani (2000).

It is important to note that the functions F/™* (A.9) are introduced in such a way that the formula (25)
remains valid for the extended set of singular spheroidal harmonics £’ including those defined by (A.9) for
Is| < ¢4 2. We apply (24) to all the sum terms in (22) but that one with p = ¢ which is written initially in the
variables of this local coordinate system. After some algebra, we find

) =200 D0 APV () + (@Y 4+ 0O (), (26)
Jj=1 =0 |s|<r+1
where
SO EN ’ ®)0)
= rlkt R ‘I’dpj’dq])Ak[ ! (27)
k=0 |I|<k+1 4
p#q

and e ) are the expansion coeflicients of the linear part of (22) given by the formula (8), with replace d;” to
q/ So-

After the local expansion of u™ in the vicinity of the point O, is found, the remaining part of solving
procedure follows the way described in Section 2. In fact, by using the re-expansion formulae (24) we have
reduced the primary many-particle problem to a coupled set of N “a medium with one inclusion in the
inhomogeneous external field” problems. The resulting inﬁnite set of linear algebraic equations are

UGt(;ni : tl JrUNI:I ( a, Jretl Z UMtsl ts ’

|s| <41
TGzl 11 +TM - ( 5;]>+ezl Z TM[?;* t57 (28)
ls] <141
g=12,...,N, t=0,1,2,. |l| <t+ 1,

where aﬁj’) = (@ a4 PN and a!?Y are given by (27). Its approximate solution can be obtained, say,

by the truncation method, when the unknowns and equations with ¢ < #,,x only are retained in (28). The

Table 1

Convergence of the matrix stress o /S33 with #,,, increased
Frax X]z =2.1R X]g =2.2R X12 =2.5R

=0 =1 =0 p=n p=0 o=n

1 3.500 3.500 3.458 3.458 3.393 3.393
3 4.079 3.518 3.821 3.447 3.510 3.370
5 4.593 3.485 4.074 3.417 3.554 3.359
7 4.944 3.447 4.215 3.395 3.570 3.356
9 5.154 3.419 4.283 3.382 3.576 3.354
11 5.271 3.401 4313 3.375 3.579 3.354
13 5.334 3.392 4.325 3.373 3.579 3.354
15 5.368 3.386 4.330 3.371 3.579 3.354

17 5.387 3.384 4.331 3.371 3.579 3.354




V.I. Kushch | International Journal of Solids and Structures 40 (2003) 6369-6388 6377

solution is convergent for fm,x — oo provided that the non touchmg condltlons IIR,| > R, + R, are satisfied
for each pair of inclusions. Thus, we can solve (28) for At, and D with any desirable accuracy by taking
tmax Sufficiently large. It is seen form Table 1 in Section 5 that the convergence rate is sufficiently high for a
whole range of the problem parameters excluding only the nearly-touching inclusions. Analysis of this
extreme case is, however, beyond the scope of this paper.

4. Spatially periodic array of inclusions

The third well-known model of composite we consider here is an unbounded medium containing a
spatially periodic array of inclusions. For the simplicity’s sake, we assume all the particles to be identical
and located in the nodes of simple cubic lattice with the period a. The elementary periodicity cell of such a
structure is the cube with side a containing one inclusion embedded. The matrix—inclusion interface con-
ditions are given by (2) whereas the loading parameter E has now a meaning of the macroscopic strain
tensor.

E = (¢) :%/Vst, (29)

V being a volume of the periodicity cell. Alternatively, the governing parameter can be taken in the form of
macroscopic stress tensor, S = (o) =+ [, adV. Here, we consider macroscopically homogeneous stress
state of composite assuming both the E and S to be constant.

This model may be thought, in particular, as a limiting case of the ordered finite array in which the
number of particles N becomes infinitely large. Likewise, the appropriate form of solution for this model is
given by (22) where N — oo. Taking the periodicity of solution pre-determined by the periodicity of
structure into account we find that A,,q> must have the same value for any ¢. Then, omitting this index in
(22) and (23), we write a formal solution as

“=E-r +ZZ > AVFD (30)

Jj=1 =0 |s|<t+1

where
J(r) =) F)(r—R,) (31)
P

and summation is made over all the lattice nodes. Provided that lATg) are the triply periodic functions, the
displacement vector (30) comply the condition (29). The method of summation and detailed convergence
analysis of the triple series (31) is given elsewhere (Kushch and Sevostianov, 2003). Here, we apply formally
the technique developed in Section 3 for a finite array of inclusions to (30) and obtain the resolving set of
equations in the form (28), with the superscript (¢) omitted, and

Z Z kt A/(cllv (32)
k=0 [I|<k+1

where the matrix coefficients are the triple infinite (lattice) sums
= 3R, dd). )
p#0

Now, we recognize that (33) are exactly the sums appearing in the conductivity problem solution for a
composite with transversely isotropic phases obtained by Kushch (1997a). There, convergence of the series
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(33) was discussed and the fast summation technique has been developed. The only difference here is the
extended variation range of indices s and / in (33). Fortunately, these series converge, conditionally at least,
for all values of indices |s| <7+ 1 and |/| <k + 1 provided that the non-touching condition a > 2R is sat-
isfied.

5. Numerical results

In this Section, we give a few numerical examples demonstrating computational efficiency and accuracy
of the method developed and showing, at the same time, how the structural parameters and phase an-
isotropy influence the microstress concentration in a composite. Noteworthy, numerical algorithm of the
method is rather simple and consists in calculating the matrix coefficients of linear system followed by
solving it with the standard linear solver routine. The typical number of unknowns retained in the resolving
set of equations varies from single-digit numbers to a few hundreds depending on complexity of the
problem being considered. This is a very moderate number in comparison with the tens and hundreds of
thousand equations in the 3D finite element analysis of similar problems which proves the above algorithm
to be highly efficient form the computational standpoint.

We begin our numerical analysis from the single inclusion problem considered in Section 2. Even this
simplest model has a number of parameters, they are five components of the matrix C™, five components of
the matrix C*, three components of the rotation matrix € and the particle radius R. In practical appli-
cations, it is often more convenient to use the so-called “technical” elastic constants, namely the Young
moduli E;, the shear moduli G;; and the Poisson’s ratios v;; rather than the components C;; of the elastic
stiffness tensor. In the case of transversely isotropic body, they are related to C;; by

G12 = %(Cll - C12)7 G23 = G13 = C447

1 c33>1 4
Ei=E,=2( ——+— y Ey=
1 ? <C11 -Cp 4 ’ (Cii+Ch) (34)
E; 1 Cx3
Vi3 = V23 13/( n+Cn), v 5 (C” —Ch Y >7

where 4 = (Cy; + C12)Css — 2(Cy3)” and only five of these constants are independent. The elastic moduli
introduced by (34) are more physically tractable and so will be taken as the input parameters in our
numerical analysis. In particular, either E3/E; or Gi3/G, = 2C44/(Cy; — C),) can be chosen as a measure
of anisotropy degree.

A complete parametric study of the problems considered above is not a subject of the present paper.
Although in all the above solutions no restrictions (but the particle-to-particle non-touching condition)
were imposed on the structure, phase properties and loading type, in the subsequent numerical study we
shall keep most of the parameters fixed and present the numerical data giving a general idea how the se-
lected structure parameters, namely distance between the particles, their relative position, misalignment of
the phase materials anisotropy axes and anisotropy degree affect the stress field around inhomogeneities.
First, uniaxial tension is the only external loading type being considered here. Next, we restrict rotation of
inclusion to the xz-plane: in this case, the only variable Euler’s parameter is the angle f between the Oz~ and
Oz" axes. To minimize number of the independent elastic constants, we put v, = v, = 0.3, v/; = vj; = 0.3,
G; =1 and E, =2.6. Two variable material-related parameters are the matrix anisotropy degree
A = E; JE; and the inclusion-to-matrix stiffness ratio, A. Thus, we have E; = AE,, G, = G, Ef = AE]
and E = 1E;. Two extreme cases here are 1 = 0 and oo, corresponding to the cavity and rigid particle. For
the elastic inclusion EJ /E| = 4; i.e., we assume the inclusion’s anisotropy degree to be equal to that of the
matrix material.
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34
-
Lagl
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o 27
7]
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Fig. 2. Stress o, variation along the cavity surface: (line 1) 4 = 1I; (line 2) 4 = 2; (line 3) 4 = 5; (line 4) 4 = 10.

First, we consider a medium with a single spherical cavity, 4 = 0. In Fig. 2, the normalized stress
a, (0)/S5; variation along the cavity surface meridian R =1, 0< 0 < n/2, ¢ = 0 calculated for the anisot-
ropy parameter 4 equal to 1 (isotropic matrix), 2, 5 and 10 is shown by the lines 1-4, respectively. Ex-
pectably, the maximum stress ¢, is located at the cavity’s equator and grows up more than two times as 4

2.0

-
o
|

Stress, o, / S33
o
(4]
|

0.0

\ \ \
0.0 0.1 0.2 0.3 0.4 0.5

Angle, 0/

Fig. 3. Stress o, variation along the matrix-rigid particle interface: (line 1) 4 = 1; (line 2) 4 = 2; (line 3) 4 = 5; (line 4) 4 = 10.
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varies from 1 to 10. The similar data for a medium containing one rigid inclusion (A = oo) are given in Fig.
3. By contrast with the cavity case, the stress concentration at the particle-matrix interface decreases with 4
increased. In both Figs. 2 and 3, the line 1 represents the well-known Lame solution for an isotropic
medium being a trivial limiting case of the solution obtained in Section 2.

The interesting example is a medium containing a single elastic inclusion made of the same material as
the matrix does: C* = C™. The matrix stress o_ variation along the matrix—inclusion interface is plotted in
Fig. 4. The curve 1 corresponds to the trivial case of aligned Oz~ and Oz" axes (ff = 0) where we have a
homogeneous material with no stress concentration: ¢, = Si;3. However, even a small misalignment of the
matrix and inclusion material anisotropy axes leads to significant peak stress growth. The lines 2-4 show
0, (0)/85; for f = n/10, 31/20 and 7/2. In the last case, the stress concentration factor k3; = max o, (6)/Ss;
is equal to 2.45. The situation considered here is rather typical for the majority of polycrystalline materials
with misaligned anisotropic grains. As we have shown already, orientation factor can contribute conside-
rably to the microstructural stress and, thus, affect the material’s properties. The magnitude of this stress is
dependent on the material anisotropy degree A: in Fig. 5, k33 is plotted as a function the rotation angle f3.
The curves 1-3 represent k3;(f) calculated for 4 = 2, 5 and 10. It is seen from these plots that the max k33
can be estimated roughly as v/4. This observation is valid, however, for the specific material and loading
type: to investigate effect of anisotropy and orientation thoroughly, much more additional work has to be
done.

Now, we consider a solid containing two particles/cavities and investigate how the distance between
them influences the stress field around them. We assume the inhomogeneities to be identical with the centres
lying on the Ox~ axis and the anisotropy axes aligned. The additional structure parameter in this problem is
a distance between the centres of inclusions, X;, = ||Ryz||. Remind that, unlike the one-particle case, so-
lution of this problem is an infinite series. For calculations, we retain in the theoretical solution a finite
number of harmonics with ¢ < #,,x. To estimate accuracy of the numerical results obtained, we need to learn
about the convergence of the truncated solution with #y, increased. In Table 1, the values o, (fmax) cal-
culated in the equator points P (0 = n/2, ¢ = 0) and P,(0 = /2, ¢ = =) of the first cavity; A =0and 4 = 5.

2.0+

-
4]
|

33

z

c /S

Stress,

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Angle, 6/ n

Fig. 4. Stress ¢, variation along the matrix—inclusion surface as a function of the angle f§ between the matrix and inclusion anisotropy
axes: (line 1) = 0; (line 2) f = =/10; (line 3) f = 37/20; (line 4) ff = n/2.
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Fig. 5. Stress concentration factor k33 as a function of the angle f# between the matrix and inclusion anisotropy axes: (line 1) 4 = 2;
(line 2) 4 = 5; (line 3) 4 = 10.

The P, is the point nearest to the other inhomogeneity: as a result, stress in this point has a maximum
whereas the convergence rate is lower than at the opposite, far side of pore. It is clearly seen from the table
that the convergence rate is slowing down as the cavities approach each other: so, for X, = 2.5R the value
tmax = 10 provides four-digit accuracy of stress evaluation. For the nearly located cavities X, = 2.1R, an
estimated relative error of ¢, does not exceed 1% for t,,x > 15. Based on this analysis, the harmonics up to
tmax = 15 were retained in the subsequent computations.

The stress concentration factor k33 in a solid with two spherical cavities is given in Table 2 as a function
of the anisotropy degree 4 and relative distance between the centres of cavities, Xj,/R. In the single cavity
limit (X}, = 00), the peak o, stress values are the same as shown in Fig. 2; with X, decreased, we observe
considerable growth of k33, which is, however, slightly slower at higher 4 values. For example, the ratio
k33(2.1)/k33(00) is equal to 1.75 for isotropic matrix and 1.55 for 4 = 10. The distance between two rigid
particles has even more prominent effect on the stress concentration in the matrix. The stress concentration
factor ki = max o (0)/S1 values due to the uniaxial tension in x-direction are given in Table 3. Here, the
ratio ky1(2.1)/k;1(o0) is about 6 and, surprisingly, depends on 4 only marginally.

The geometry of our third model, being a simple cubic array of particles embedded in the transversely
isotropic matrix can be defined either by the distance a between the neighboring particles or by the volume
content ¢ of dispersed phase ¢ = 3n(R/a). To be consistent with previous analysis, we take the averaged

Table 2
Stress concentration factor k33 = max g} (0)/Ss; in a solid with two spherical cavities
A X]z/R:OO Xlz/R:25 Xlz/R:23 Xlz/R:22 Xlz/RZZI
1.0 2.05 2.23 2.54 2.87 3.58
2.0 2.47 2.68 3.00 3.37 4.25
5.0 3.32 3.58 3.92 4.33 5.39

10.0 4.27 4.59 4.97 5.42 6.61
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Table 3
Stress concentration factor ky; = max o, (0)/S1; in a solid with two rigid spherical inclusions
A Xlz/RiOO Xlz/R:25 X]g/R:23 X]z/R:22 X]g/R:21
1.0 2.02 3.96 5.57 7.85 13.1
2.0 2.00 3.98 5.58 7.42 12.3
5.0 2.01 3.99 5.52 7.28 11.9
10.0 2.01 4.0 5.53 7.27 11.9

stress tensor S = (o) rather than E = (&) as a governing parameter of the problem. In order to simulate the
macroscopic uniaxial tension of composite, components of the tensor E were chosen in a way that the
condition S;; = J;30;; is satisfied. The curves in Fig. 6 show the matrix stress ¢, /Ss3; variation along
the matrix—inclusion interface in the composite with 4 = 3 and 1 = 100.

33

V4

c /S

Stress,

N

0.0 0.1 0.‘2 0.‘3
Angle, 6/ n

Fig. 6. Stress ¢, variation along the matrix—inclusion interface in the periodic composite with 4 =3 and 4 = 100: (line 1) ¢ = 0;
(line 2) ¢ = 0.15; (line 3) ¢ = 0.30; (line 4) ¢ = 0.45.

Table 4

Stress concentration factor k33 in a composite with elastic spherical inclusions, 4 = 3
A c=0 c=0.15 c=0.30 c=045
0.1 2.38 2.50 2.94 3.07
0.5 1.48 1.55 1.66 1.83
1.0 1.0 1.0 1.0 1.0
2.0 1.22 1.42 1.49 1.58
10.0 1.48 2.00 2.45 3.76
100.0 1.55 2.21 2.92 6.47
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The results obtained for the composite with a volume fraction of dispersed phase ¢ = 0.1, 0.15, 0.3 and
0.45 are shown by the lines 14, respectively. It is seen from these plots that the maximum tensile stress o, is
localized in area between the hard particles and for ¢ = 0.45 is more than four times higher than that in the
solid with a single inclusion. The values of stress concentration factor k33 as a function of ¢ and 4 are given
in Table 4.

As the parametric study shows, Ok;3/0c is always positive, no matter softer or harder are the particles in
comparison with the matrix material.

6. Conclusions

The accurate and efficient analytical method has been developed to study the microstress field in a
particulate composite with transversely isotropic elastic phases. The essence of method is the multipole
expansion technique reducing the complicated primary boundary-value problem for 3D multiple-connected
domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical efficiency.
The method has been applied systematically to solve for stress in three basic models of particulate com-
posite, namely a solid containing one, a finite array and an infinite spatially periodic array of spherical
inclusions. The solution obtained for a single inclusion problem is finite-form and exact; for the many-
particle problems, the method provides an asymptotically exact series solution. The numerical results are
given demonstrating an accuracy and numerical efficiency of the method and disclosing the way and extent
to which the selected structural parameters influence the stress concentration at the matrix—inclusion in-
terface.

The method exposed above is flexible enough to be generalized in many ways. The possible next steps in
developing the given approach include the detailed parametric study of the microstress concentrations and
the macroscopic elastic properties of composite with transversely isotropic phases based on more realistic
model of microstructure. Also, the method with minor modifications (Kushch, 1997a) can be applied to
study the effect of phase anisotropy in the composites with ellipsoidal inclusions and penny-shaped cracks.
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Appendix A. Partial solutions of the equilibrium equations of transversely-isotropic elastic solid

The well known fact (e.g. Podil’chuk, 1984) is that a solution of the equilibrium equations V - ¢ = 0 can
be represented by means of three potential functions

0P, 0P, 0d; 0P, 0P, 09; 0P, 0P,
Uy=—+—+—, Uy=—-"+—-—"-—-, =k—+hk—.
Ox Ox dy oy oy Ox 0z 0z
These functions satisfy the equation

o? 0? 0? .
(atap vz )Jo=0 s=123 2

(A.1)

where v; = 2Cy/(Cyy — Cy2) whereas v; and v, are the roots of equation

C11Cuv? — [(Caa)® — C11Cx3 — (Ci3 + Caa)’]y + C33Cay = 0. (A.3)
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Expressions of k; and k, in (A.1) are

Ciiv; —Cu vi(Ci3+ Cas) .
f; = =Y S . j=1,2 A4
7 Ciy+Cu Cs3 —v;iCy / (A4)

In the case v; # v,, representation (A.1) is general. A slightly modified, complex-valued form of general
solution was suggested by Fabrikant (1989).
Now, we introduce new spatial variables x; =x, y; =y, z; = z/ \/Vj> in these variables,

2 o o
— 4 — ®; = .
<6x}+6yj?+62> 0. (A.5)
The sets of singular and regular partial solutions are given by (A.1), with the potential functions
j 1 s S
o) = (2t ) [y (v, dy) — Fy (v, d))],
. § A.6
D = G Ve e d) < £ (), (A.6)
t=0,1,2,..., |s|<t+1,
where
S (t = s)! .
Fi(r,d) = 1 01(O)F () exp(ise),
(t+s)!
( | (A7)
t—s .
S d) = 1 £ (©)F; () exp(ise),

are the singular and regular, respectively, harmonic functions obtained by separation of variables in the
Laplace equation written in the spheroidal coordinates Hobson (1931), P/ and O are the associated
Legendre functions of the first and second kind, respectively. In (A.6), (¢;,1;, @;) for v; < 1 are the modified
prolate spheroidal coordinates

x+iy = dinexplio;), z= vz = \Vidi&m, &=/ &)r-1, = V1= (n,)". (A.8)

In the case v; > 1, one has to use the oblate spheroidal coordinates instead.

Note that, according to Hobson (1931), F* = ¥ =0 for | s |> ¢; this condition, however, makes it im-
possible to represent some of the singular solutions in the form (A.1) and (A.6). To resolve for this diffi-
culty, we exploit the Podil’chuk’s (1984) idea and introduce the following, additional to (A.7), functions of
the form

FH(nd) = o 07 (O (n) expli(t + ko], k=0,1,2,..., (A9)

(2t +k)!

where

(2t + k (2t + k)
k t+k
wo =g ] / oo -2
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for 0<p<1; for p <0, P (p) = (— )P’*"( p). We have for k =0

o [ o=
Im—/pllz p—zizt; ( )(l—p”“),

_ [ 1) [ (1—p*?)
e IR et

It is fairly straightforward to show that the functions (A.9) are the singular solutions of the Laplace
equations: unlike (A.7), they are discontinuous at z = 0. In the general series solution, however, these
breaks cancel each other and give the continuous and differentiable expressions of the displacement and
stress fields; for more discussion on this point, see Section 2. Note that the functions similar to /"' were
used by Smith (1984) to solve the problem for a medium with a single penny-shape crack.

In (A.6), parameters of the modified spheroidal coordinate system (A.8) are chosen in a way that

¢; = &; = const at the surface r = R; i.e., S is the {-coordinate surface in each coordinate system introduced
by (A.8). We provide this by defining

di=R/Cp, o =1/vi/lvi 1.

In this case, moreover, we have , = 0 and ¢; = ¢ for » = R, where (r,0, ¢) are the ordinary spherical
coordinates corresponding to the Cartesian ones (x, y,z).

This is the key point: no matter how complicated solution in the bulk is, at the interface we get the linear
combination of regular spherical harmonics Y}(0, ¢) = P’(cos 0) exp(is@). Under this circumstance, satis-
faction the contact conditions at interface is the nothing more than standard algebra. Now, substituting qb(’
(A.6) into (A.1) and using the properties of the functions (A.7)

et (i o) 42 ) = 1 )

(Zti)<§c+'§)[,ﬂ( &)+ 1240 d)] =~ (1), (A10)

(21‘1 ) [fr+l( )+f;:1(l', d)] :f;‘.(n d)a

we obtain the following set of regular vectorial solutions:

f(/( ) f: l(l'“ ) f;Pr (l',, )eZ + \/j—f; (l’,, )63, J= 1’2’ (All)

(1) = £ (s, dy)ey + £ (1, ds)ey, t=0,1,2,..., |s] <t+1,

where the complex Cartesian basis vectors are e; = (e, +1ie,)/2, e, = (e, —ie,)/2 and e; = e,. In particular,
f(’ describe linear deformation of the transversely isotropic solid
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2aif}) = —xe, — ye, + 2]%zez,
di(f)) +1])) = ﬁ (ze, + kiye:),
d(fy — 1)) = \/lﬁ (ze, + kyxe.),

2d( 12 +f1 L) = (xe, —yey)’

(A.12)
2d, (f12 - fl 1) = i(xe, + ye,),
k:
2 A\ = —xe, — ye, + 2V—22ez7
2
1
) _ e ey L
2581y =ilve, —xe,), as(£) + 1) N
3 3 1
d3(f(11) - f(l,>—1) = ﬁzey,
the displacement vector u, = E - r can be written as a linear combination of functions (A.12).
At the spherical surface » = R, the functions f/(r) (A.11) take the form
. k.
1(r) |s= P (&) e — P (Eo) 1 ea + —= P (E) e,
t t JO/ Lt t t \/V—/ 1 \5j0) Ly (A.l3)

£ (r) |s= P (&) e + P (Exo) 2 e,

where i} = Ef;;;: Y3 (0, @), readily to be substituted in the interfacial boundary conditions (2) for displace-

ments.
To satisfy the stress boundary conditions, we need the similar expressions for the traction vector

T, = g -n. After somewhat involved algebra, we obtain the following representation of T,,(fg>) at the
surface S:

/RN ootz 8= 1) (vCio—kCis) oy 1 i1
EET)y = |t DR (g~ U BT ) ey - [ DR )
+ (S; 1) (V./'Clz _ij13)Pty+l(éj0):| /{H e + (kl + 1) (é/o)[e3’ j=1,2, (A.14)
jo vjCag
ﬁ G| = L is—1 _ 30 -1 1
C44T () )|s Vi [Pz (&) +(s—1) G 5 P (530)] 0 e

1 ¢30 I s
4 Pt/s+l 4 1 H»l H»l 5+ __P[s Af .
—\/ﬂ (&30) — (s )(530) (530)] —\/V—3 Zao (&30)x7e3

The results exposed above imply v, # vo,. When v; = v,, solution (A.1) is not general because of
f) = £, In this case, however, the general solution of V - ¢ = 0 can be represented as

0b, OV 0%y 0P 0¥ 0%
T T Ty Ty Ty ALS)
L 0P Q¥ Ciy+3Cu '

= e ChtCu
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or, in the vectorial form,

Ciz +3Cy )

u=Vo +Vx(dse)+ [zV—-————¢. |,
1 (Dse.) (Z Cis+ Cus

where the potential function ¥ satisfies Eq. (A.2) with v =v,. To get the complete set of independent

solutions (A.11), f? can be taken in the form

Ci3+3Cy

£ (r d<v
() e Ciz3 + Cu

ts

ez) L dy) + id (60) VL (1, dy). (A.16)
With the last term added, expression of f?) at the surface = R is rather simple:

610 S — §— 610 S 5
() |s = \/W(t+s) P ()0 e — \/metfll(fm)mﬂez

C 3C.
[ Sl (E10) — 254 b ) | e, (A.17)

>0 ps _
(t+s+1) -1 Ciz3 4+ Cy

For the expression of the corresponding traction vector, see Podil’chuk (1984).

The explicit form of the singular solutions FE{) is given by Eq. (A.11) with the replace f; on F;’. To get the
expression of FY) and T,(FY)) at the interface, one has to substitute P*(¢) by 03(¢) in (A.13) and (A.14),
respectively.
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